Asymptotic bounds for the expected L1 error of a multivariate kernel density estimator

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Behaviors of Nearest Neighbor Kernel Density Estimator in Left-truncated Data

Kernel density estimators are the basic tools for density estimation in non-parametric statistics.  The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in  which  the  bandwidth  is varied depending on the location of the sample points. In this paper‎, we  initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...

متن کامل

Some Asymptotic Results of Kernel Density Estimator in Length-Biased Sampling

In this paper, we prove the strong uniform consistency and asymptotic normality of the kernel density estimator proposed by Jones [12] for length-biased data.The approach is based on the invariance principle for the empirical processes proved by Horváth [10]. All simulations are drawn for different cases to demonstrate both, consistency and asymptotic normality and the method is illustrated by ...

متن کامل

A Berry-Esseen Type Bound for the Kernel Density Estimator of Length-Biased Data

Length-biased data are widely seen in applications. They are mostly applicable in epidemiological studies or survival analysis in medical researches. Here we aim to propose a Berry-Esseen type bound for the kernel density estimator of this kind of data.The rate of normal convergence in the proposed Berry-Esseen type theorem is shown to be O(n^(-1/6) ) modulo logarithmic term as n tends to infin...

متن کامل

Asymptotic normality of the deconvolution kernel density estimator under the vanishing error variance

Let X1, . . . , Xn be i.i.d. observations, whereXi = Yi+σnZi and the Y ’s and Z’s are independent. Assume that the Y ’s are unobservable and that they have the density f and also that the Z’s have a known density k. Furthermore, let σn depend on n and let σn → 0 as n → ∞. We consider the deconvolution problem, i.e. the problem of estimation of the density f based on the sample X1, . . . , Xn. A...

متن کامل

Asymptotic properties of the kernel estimator for thetransition density of a

In this paper we prove rates of uniform strong convergence, convergence rates of the mean square error and the asymptotic normality of the kernel estimator for the transition density of a geometrically ergodic Markov chain. The assumptions on the Markov chain are closely related to absolute regularity. We allow the initial distribution of the Markov chain to be arbitrary.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 1992

ISSN: 0047-259X

DOI: 10.1016/0047-259x(92)90046-i